The Analytic Hierarchy Process (AHP)
for Decision Making By Thomas Saaty

Decision Making involves setting priorities and the AHP is the methodology for doing that.

Real Life Problems Exhibit:

Strong Pressures
and Weakened Resources
Complex Issues - Sometimes
There are No "Right" Answers

Vested Interests

Conflicting Values

Most Decision Problems are Multicriteria

- Maximize profits
- Satisfy customer demands
- Maximize employee satisfaction
- Satisfy shareholders
- Minimize costs of production
- Satisfy government regulations
- Minimize taxes
- Maximize bonuses

Decision Making

Decision making today is a science. People have hard decisions to make and they need help because many lives may be involved, the survival of the business depends on making the right decision, or because future success and diversification must survive competition and surprises presented by the future.

WHAT KIND AND WHAT AMOUNT OF KNOWLEDGE TO MAKE DECISIONS

Some people say

- What is the use of learning about decision making? Life is so complicated that the factors which go into a decision are beyond our ability to identify and use them effectively.

I say that is not true.
-We have had considerable experience in the past thirty years to structure and prioritize thousands of decisions in all walks of life. We no longer think that there is a mystery to making good decisions.

THE GOODS THE BADS AND THE INTANGIBLES

- Decision Making involves all kinds of tradeoffs among intangibles. To make careful tradeoffs we need to measure things because a bad may be much more intense than a good and the problem is not simply exchanging one for the other but they must be measured quantitatively and swapped.
- One of the major problems that we have had to solve has been how to evaluate a decision based on its benefits, costs, opportunities, and risks. We deal with each of these four merits separately and then combine them for the overall decision.

3 Kinds of Decisions

a) Instantaneous and personal like what restaurant to eat at and what kind of rice cereal to buy; b) Personal but allowing a little time like which job to choose and what house to buy or car to drive; c) Long term decisions and any decisions that involve planning and resource allocation and more significantly group decision making.

We can use the AHP and ANP as they are. Personal decisions need to be automated with data and judgments by different types of people so every individual can identify with one of these groups whose judgments for the criteria he would use and which uses the rating approach for all the possible alternatives in the world so one can quickly choose what he prefers after identifying with that type of people. A chip needs to be installed for this purpose for example in a cellular phone.

Knowledge is Not in the Numbers

Isabel Garuti is an environmental researcher whose father-in-law is a master chef in Santiago, Chile. He owns a well known Italian restaurant called Valerio. He is recognized as the best cook in Santiago. Isabel had eaten a favorite dish risotto ai funghi, rice with mushrooms, many times and loved it so much that she wanted to learn to cook it herself for her husband, Valerio's son, Claudio. So she armed herself with a pencil and paper, went to the restaurant and begged Valerio to spell out the details of the recipe in an easy way for her. He said it was very easy. When he revealed how much was needed for each ingredient, he said you use a little of this and a handful of that. When it is O.K. it is O.K. and it smells good. No matter how hard she tried to translate his comments to numbers, neither she nor he could do it. She could not replicate his dish. Valerio knew what he knew well. It was registered in his mind, this could not be written down and communicated to someone else. An unintelligent observer would claim that he did not know how to cook, because if he did, he should be able to communicate it to others. But he could and is one of the best.

> Valerio can say, "Put more of this than of that, don't stir so much," and so on. That is how he cooks his meals - by following his instincts, not formalized logically and precisely.
> The question is: How does he synthesize what he knows?

Knowing Less, Understanding More

You don't need to know everything to get to the answer.

Expert after expert missed the revolutionary significance of what Darwin had collected. Darwin, who knew less, somehow understood more.

Aren't Numbers Numbers?
 We have the habit to crunch numbers whatever they are

An elderly couple looking for a town to which they might retire found Summerland, in Santa Barbara County, California, where a sign post read:

Summerland		
Population	3001	
Feet Above Sea Level	208	
Year Established	1870	
	Total	5079

"Let's settle here where there is a sense of humor," said the wife; and they did.

Do Numbers Have an Objective Meaning?

Butter: 1, 2, ..., 10 lbs.; $1,2, \ldots, 100$ tons
Sheep: 2 sheep (1 big, 1 little)
Temperature: 30 degrees Fahrenheit to New Yorker, Kenyan, Eskimo
Since we deal with Non-Unique Scales such as [lbs., kgs], [yds, meters], [Fahr., Celsius] and such scales cannot be combined, we need the idea of PRIORITY.

PRIORITY becomes an abstract unit valid across all scales.

A priority scale based on preference is the AHP way to standardize non-unique scales in order to combine multiple criteria.

Nonmonotonic Relative Nature of Absolute Scales

Good for
preserving food
Bad for
preserving food

Good for
preserving food
:---
comfort

OBJECTIVITY!?

Bias in upbring: objectivity is agreed upon subjectivity. We interpret and shape the world in our own image. We pass it along as fact. In the end it is all obsoleted by the next generation.

Logic breaks down: Russell-Whitehead Principia; Gödel's Undecidability Proof.

Intuition breaks down: circle around earth; milk and coffee.
How do we manage?

Making a Decision

Widget B is cheaper than Widget A
Widget A is better than Widget B
Which Widget would you choose?

Basic Decision Problem

Criteria: Low Cost $>$ Operating Cost $>$ Style
$\begin{array}{llll}\text { Car: } & \text { A } & \text { B } & \text { B } \\ & \text { V } & \text { V } & \text { V } \\ \text { Alternatives: } & \text { B } & \text { A } & \text { A }\end{array}$
Suppose the criteria are preferred in the order shown and the cars are preferred as shown for each criterion. Which car should be chosen? It is desirable to know the strengths of preferences for tradeoffs.

To understand the world we assume that:

We can describe it \downarrow

We can define relations between
its parts and
We can apply judgment to relate the parts according to
a goal or purpose that we have in mind.

Power of Hierarchic Thinking

A hierarchy is an efficient way to organize complex systems. It is efficient both structurally, for representing a system, and functionally, for controlling and passing information down the system.

Unstructured problems are best grappled with in the systematic framework of a hierarchy or a feedback network.

Order, Proportionality and Ratio Scales

- All order, whether in the physical world or in human thinking, involves proportionality among the parts, establishing harmony and synchrony among them. Proportionality means that there is a ratio relation among the parts. Thus, to study order or to create order, we must use ratio scales to capture and synthesize the relations inherent in that order. The question is how?

Relative Measurement The Process of Prioritization

In relative measurement a preference, judgment is expressed on each pair of elements with respect to a common property they share.

In practice this means that a pair of elements in a level of the hierarchy are compared with respect to parent elements to which they relate in the level above.

Relative Measurement (cont.)

If, for example, we are comparing two apples according to weight we ask:

- Which apple is bigger?
- How much bigger is the larger than the smaller apple?

Use the smaller as the unit and estimate how many more times bigger is the larger one.

- The apples must be relatively close (homogeneous) if we hope to make an accurate estimate.

Relative Measurement (cont.)

- The Smaller apple then has the reciprocal value when compared with the larger one. There is no way to escape this sort of reciprocal comparison when developing judgments
-If the elements being compared are not all homogeneous, they are placed into homogeneous groups of gradually increasing relative sizes (homogeneous clusters of homogeneous elements).
- Judgments are made on the elements in one group of small elements, and a "pivot" element is borrowed and placed in the next larger group and its elements are compared. This use of pivot elements enables one to successively merge the measurements of all the elements. Thus homogeneity serves to enhance the accuracy of measurement.

Comparison Matrix

Given: Three apples of different sizes.

We Assess Their Relative Sizes By Forming Ratios

Size Comparison	Apple A	Apple B	Apple C
Apple A	$\mathrm{S}_{1} / \mathrm{S}_{1}$	$\mathrm{~S}_{1} / \mathrm{S}_{2}$	$\mathrm{~S}_{1} / \mathrm{S}_{3}$
Apple B	$\mathrm{S}_{2} / \mathrm{S}_{1}$	$\mathrm{~S}_{2} / \mathrm{S}_{2}$	$\mathrm{~S}_{2} / \mathrm{S}_{3}$
Apple C	$\mathrm{S}_{3} / \mathrm{S}_{1}$	$\mathrm{~S}_{3} / \mathrm{S}_{2}$	$\mathrm{~S}_{3} / \mathrm{S}_{3}$

When the judgments are consistent, as they are here, any normalized column gives the priorities.

Pairwise Comparisons using Judgments and the Derived Priorities

Nicer ambience comparisons				Normalized	Total
Paris	1	2	5	0.5815	1
London	1/2	1	3	0.3090	0.5328
New York	$1 / 5$	$1 / 3$	1	0.1095	0.1888

Pairwise Comparisons using Judgments and the Derived Priorities

SCORING AND PAIRED COMPARISONS

In scoring one guesses at numbers to assign to things and when one normalizes, everything falls between zero and one and can look respectable because if we know the ordinal ranking of things, then assigning them comparable numbers yields decimals that have the appropriate order and also differ by a little from each other and lie between zero and one, it sounds fantastic despite guessing at the numbers.
Paired comparisons is a scientific process in which the smaller or lesser element serves as the unit and the larger or greater one is estimated as a multiple of that unit. Although one can say that here too we have guessing but it is very different because we know what we are supposed to do and not just pull a number out of a hat. Therefore one would expect better answers from paired comparisons. If the person making the comparisons knows nothing about the elements being compared, his outcome would be just as poor as the other. But if he does know the elements well, one would expect very good results.

When the judgments are consistent, we have two ways to get the answer:

1. By adding any column and dividing each entry by the total, that is by normalizing the column, any column gives the same result. A quick test of consistency if all the columns give the same answer.
2. By adding the rows and normalizing the result.

When the judgments are inconsistent we have two ways to get the answer:

1. An approximate way: By normalizing each column, forming the row sums and then normalizing the result.
2. The exact way: By raising the matrix to powers and normalizing its row sums

Consistency

In this example Apple B is 3 times larger than Apple C. We can obtain this value directly from the comparisons of Apple A with Apples B \& C as $6 / 2=3$. But if we were to use judgment we may have guessed it as 4 . In that case we would have been inconsistent.

Now guessing it as 4 is not as bad as guessing it as 5 or more. The farther we are from the true value the more inconsistent we are. The AHP provides a theory for checking the inconsistency throughout the matrix and allowing a certain level of overall inconsistency but not more.

Consistency (cont.)

- Consistency itself is a necessary condition for a better understanding of relations in the world but it is not sufficient. For example we could judge all three of the apples to be the same size and we would be perfectly consistent, but very wrong.
- We also need to improve our validity by using redundant information.
- It is fortunate that the mind is not programmed to be always consistent. Otherwise, it could not integrate new information by changing old relations.

Consistency (cont.)

Because the world of experience is vast and we deal with it in pieces according to whatever goals concern us at the time, our judgments can never be perfectly precise.

It may be impossible to make a consistent set of judgments on some pieces that make them fit exactly with another consistent set of judgments on other related pieces. So we may neither be able to be perfectly consistent nor want to be.

We must allow for a modicum of inconsistency. This explanation is the basis of fuzziness in knowledge. To capture this kind of fuzziness one needs ratio scales.

Fuzzy Sets have accurately identified the nature of inconsistency in measurement but has not made the link with ratio scales to make that measurement even more precise and grounded in a sound unified theory of ratio scales. Fuzzy Sets needs the AHP!

Consistency (cont.)
 How Much Inconsistency to Tolerate?

- Inconsistency arises from the need for redundancy.
- Redundancy improves the validity of the information about the real world.
- Inconsistency is important for modifying our consistent understanding, but it must not be too large to make information seem chaotic.
- Yet inconsistency cannot be negligible; otherwise, we would be like robots unable to change our minds.
- Mathematically the measurement of consistency should allow for inconsistency of no more than one order of magnitude smaller than consistency. Thus, an inconsistency of no more than 10% can be tolerated.
- This would allow variations in the measurement of the elements being compared without destroying their identity.
- As a result the number of elements compared must be small, i.e. seven plus or minus two. Being homogeneous they would then each receive about ten to 15 percent of the total relative value in the vector of priorities.
- A small inconsistency would change that value by a small amount and their true relative value would still be sufficiently large to preserve that value.
- Note that if the number of elements in a comparison is large, for example 100 , each would receive a 1% relative value and the small inconsistency of 1% in its measurement would change its value to 2% which is far from its true value of 1%.

Comparison of Intangibles

> The same procedure as we use for size can be used to compare things with intangible properties. For example, we could also compare the apples for:

- TASTE
- AROMA
- RIPENESS

The Analytic Hierarchy Process (AHP) is the Method of Prioritization

- AHP captures priorities from paired comparison judgments of the
- elements of the decision with respect to each of their parent criteria
- Paired comparison judgments can be arranged in a matrix.
- Priorities are derived from the matrix as its principal eigenvector,
- which defines a ratio scale. Thus, the eigenvector is an intrinsic
- concept of a correct prioritization process. It also allows for the
- measurement of inconsistency in judgment.
- Priorities derived this way satisfy the property of a ratio scale
- just like pounds and yards do.

Decision Making

We need to prioritize both tangible and intangible criteria:

- In most decisions, intangibles such as
- political factors and
- social factors
take precedence over tangibles such as
- economic factors and
- technical factors
- It is not the precision of measurement on a particular factor that determines the validity of a decision, but the importance we attach to the factors involved.
- How do we assign importance to all the factors and synthesize this diverse information to make the best decision?

Verbal Expressions for Making Pairwise Comparison Judgments

Equal importance
Moderate importance of one over another
Strong or essential importance
Very strong or demonstrated importance
Extreme importance

Fundamental Scale of Absolute Numbers Corresponding to Verbal Comparisons

1 Equal importance
3 Moderate importance of one over another
5 Strong or essential importance
7 Very strong or demonstrated importance
9 Extreme importance
2,4,6,8 Intermediate values
Use Reciprocals for Inverse Comparisons

Which Drink is Consumed More in the U.S.? An Example of Estimation Using Judgments							
Consumption in the U.S.	Coffee	Wine	Tea	Beer	Sodas	Milk	Water
Coffee	1	9	5	2	1	1	1/2
Wine	1/9	1	1/3	1/9	1/9	1/9	1/9
Tea	1/5	2	1	1/3	1/4	1/3	1/9
Beer	1/2	9	3	1	1/2	1	1/3
Sodas	1	9	4	2	1	2	1/2
Milk	1	9	3	1	1/2	1	1/3
Water	2	9	9	3	2	3	1
The derived scale based on the judgments in the matrix is:							
Coffee Wine Tea Beer Sodas Milk Water .177 .019 .042 .116 .190 .129 .327							
with a consistency ratio of .022 .							
The actual consumption (from statistical sources) is:							
	. 010	. 040	. 120	. 180	. 140	. 33	

Estimating which Food has more Protein

Food Consumption in the U.S.	A	B	C	D	E	F	G
A: Steak	1	9	9	6	4	5	1
B: Potatoes		1	1	$1 / 2$	$1 / 4$	$1 / 3$	$1 / 4$
C: Apples			1	$1 / 3$	$1 / 3$	$1 / 5$	$1 / 9$
D: Soybean							
E: Whole Wheat Bread	(Reciprocals)		1	$1 / 2$	1	$1 / 6$	
F: Tasty Cake			1	3	$1 / 3$		
G: Fish				1	$1 / 5$		
						1	

The resulting derived scale and the actual values are shown below:

	Steak	Potatoes	Apples	Soybean	W. Bread	T. Cake	Fish
Derived	.345	.031	.030	.065	.124	.078	.328
Actual	.370	.040	.000	.070	.110	.090	.320
		(Derived scale has a consistency ratio of .028.$)$					

WEIGHT COMPARISONS

Weight	Radio	Typewriter	Large Attache Case	Projector	Small Attache	Eigenvector	Actual Relative Weights
Radio	1	$1 / 5$	$1 / 3$	$1 / 4$	4	0.09	0.10
Typewiter	5	1	2	2	8	0.40	0.39
Large Attache Case	3	$1 / 2$	1	$1 / 2$	4	0.18	0.20
Projector	4	$1 / 2$	2	1	7	0.29	0.27
Small Attache Case	$1 / 4$	$1 / 8$	$1 / 4$	$1 / 7$	1	0.04	0.04

DISTANCE COMPARISONS

Comparison ofDistances from	Cairo	Tokyo	Chicago	San Francisco	London Montreal		Eigen- vector	Distance to Philadelph Philadelphia	Ristance
ia in miles									

All Four Figures have the same Perimeter

	Length	Width	Perimeter	Relative
		.25		
F1	9	1	20	.25
F2	8	2	20	.25
F3	7	3	20	.25
F4	6	4	20	

Nagy Airline Market Share Model

Nagy Airline Market Share Model		
	Model	Actual
		(Yr 2000)
American	23.9	24.0
United	18.7	19.7
Delta	18.0	18.0
Northwest	11.4	12.4
Continental	9.3	10.0
US Airways	7.5	7.1
Southwest	5.9	6.4
Amer.West	4.4	2.9

	Income	Relative Share (Income)	Relative Share (Model)
Total	$7,914,051$		
TELESP	$5,104,000$	64.5	64.5
BCP	$1,778,951$	22.5	20.9
TESS	$1,032,000$	13.0	14.6

Comparación Modelo ANP v/s Realidad Actual.

	ANP Results	ACtual
Asociación Chilena de Seguridad (ACHS)	$52,0 \%$	$52,6 \%$
Mutual de Seguridad	$35,5 \%$	$34,8 \%$
Instituto Seguros del Trabajo (IST)	$12,5 \%$	$12,6 \%$
Total	$100,0 \%$	$100,0 \%$

Extending the 1-9 Scale to $1-\infty$

-The 1-9 AHP scale does not limit us if we know how to use clustering of similar objects in each group and use the largest element in a group as the smallest one in the next one. It serves as a pivot to connect the two.
-We then compare the elements in each group on the 19 scale get the priorities, then divide by the weight of the pivot in that group and multiply by its weight from the previous group. We can then combine all the groups measurements as in the following example comparing a very small cherry tomato with a very large watermelon.

School Selection							
L F SL VT CP MC Weights							
Learning	1	4	3	1	3	4	.32
Friends	$1 / 4$	1	7	3	$1 / 5$	1	.14
School Life	$1 / 3$	$1 / 7$	1	$1 / 5$	$1 / 5$	$1 / 6$.03
Vocational Trng.	1	$1 / 3$	5	1	1	$1 / 3$.13
College Prep.	$1 / 3$	5	5	1	1	3	.24
Music Classes	$1 / 4$	1	6	3	$1 / 3$	1	.14

Comparison of Schools with Respect to the Six Characteristics								
	$$	$\begin{array}{\|r\|} \hline \text { Priorties } \\ \hline .16 \\ \hline \end{array}$		$\begin{aligned} & \text { Friends } \\ & A \quad B \quad C_{C} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Priorities } \\ \hline .33 \\ \hline \end{array}$		School Life A B C	Priorities
A	1 $1 / 31 / 2$		A	11		A	$1 \begin{array}{ll}1 & 5\end{array}$	45
B	317	. 59	B	$1 \begin{array}{ll}1 & 1\end{array}$. 33	B	$\begin{array}{lll}1 / 5 & 1 & 1 / 5\end{array}$. 09
c	$2 \begin{array}{lll}2 & 1 / 3 & 1\end{array}$. 25	C	$1 \begin{array}{ll}1 & 1\end{array}$. 33	C	$1 \begin{array}{lll}1 & 5\end{array}$. 46
	Vocational Trng	Priorities		College Prep.	Priorities		Music Classes	Priorities
A	97	. 77	A	$\begin{array}{lll}1 & 1 / 2\end{array}$. 25	A	164	. 69
B	$\begin{array}{llll}1 / 9 & 1 & 1 / 5\end{array}$. 05	B	212	. 50	B	$\begin{array}{lll}1 / 6 & 1 & 1 / 3\end{array}$. 09
c	$\begin{array}{lll}1 / 7 & 5 & 1\end{array}$. 17	c	$1 \begin{array}{ll}1 / 2 & 1\end{array}$. 25	C	$\begin{array}{llll}1 / 4 & 3 & 1\end{array}$. 22

Composition and Synthesis

Impacts of School on Criteria

	.32 L	.14 F	.03 SL	.13	.24	.14	
VT	CP	MC	Composite Impact of Schools				
A	.16	.33	.45	.77	.25	.69	.37
B	.59	.33	.09	.05	.50	.09	.38
C	.25	.33	.46	.17	.25	.22	.25

The School Example Revisited Composition \& Synthesis:

Impacts of Schools on Criteria

| Distributive Mode
 (Normalization: Dividing each
 entry by the total in its column) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | .32 .14 .03 .13 .24 .14 Composite
 L
 F SL VT CP MC Impact of
 Schools
 A .16 .33 .45 .77 .25 .69
 B .59 .33 .09 .05 .50 .09
 C .25 .33 .46 .17 .25 .22
 .38 | | | | | |

The Distributive mode is useful when the uniqueness of an alternative affects its rank. The number of copies of each alternative also affects the share each receives in allocating a resource. In planning, the scenarios considered must be comprehensive and hence their priorities depend on how many there are. This mode is essential for ranking criteria and sub-criteria, and when there is dependence.

Evaluating Employees for Raises

Final Step in Absolute Measurement

Rate each employee for dependability, education, experience, quality of work, attitude toward job, and leadership abilities.

	Dependability 0.0746	Education 0.2004	Experience 0.0482	Quality 0.3604	Attitude 0.0816	Leadership 0.2348	Total	Normalized
Esselman, T.	Outstand	Doctorate	>15 years	Excellent	Enthused	Outstand	1.000	0.153
Peters, T.	Outstand	Masters	>15 years	Excellent	Enthused Hayat, F.	Outstand	Masters	>15 years
Becker, L.	Outstand	Vachelor	$6-15$ years	Excellent	Enthused	Obv. Avg.	Average	0.752
Adams, V.	Good	Bachelor	$1-2$ years	Excellent	Enthused	Average	0.580	0.564
Kelly, S.	Good	Bachelor	$3-5$ years	Excellent	Average	Average	0.517	0.089
Joseph, M.	Blw Avg.	Hi School	$3-5$ years	Excellent	Average	Average	0.467	0.079
Tobias, K.	Outstand	Masters	$3-5$ years	V. Good	Enthused	Abv. Avg.	0.466	0.071
Washington, S.	V. Good	Masters	$3-5$ years	V. Good	Enthused	Abv. Avg.	0.435	0.066
O'Shea, K.	Outstand	Hi School	>15 years	V. Good	Enthused	Average	0.397	0.061
Williams, E.	Outstand	Masters	$1-2$ years	V. Good	Abv. Avg.	Average	0.368	0.056
Golden, B.	V. Good	Bachelor	.15 years	V. Good	Average	Abv. Avg.	0.354	0.054

The total score is the sum of the weighted scores of the ratings. The money for raises is allocated according to the normalized total score. In practice different jobs need different hierarchies.

Toasters were assigned 0 or 1 under subcriterla: Econ=1 If Cost<17 Brit. pounds

E-04\%

A Complete Hierarchy to Level of Objectives

Best Word Processing Equipment Cont.

Benefit/Cost Preference Ratios

$\frac{\text { Lanier }}{}$
$\frac{.42}{.54}=0.78$

$$
\begin{array}{ll}
\frac{\text { Syntrex }}{\frac{.37}{.28}}=1.32 \quad & \frac{\text { Qyx }}{.21} \\
\uparrow &
\end{array}
$$

Best Alternative

Group Decision Making and the Geometric Mean

Suppose two people compare two apples and provide the judgments for the larger over the smaller, 4 and 3 respectively. So the judgments about the smaller relative to the larger are $1 / 4$ and $1 / 3$.

Arithmetic mean

$$
4+3=7
$$

$$
1 / 7 \neq 1 / 4+1 / 3=7 / 12
$$

Geometric mean
$\sqrt{ } 4 \times 3=3.46$

$$
1 / \sqrt{ } 4 \times 3=\sqrt{ } 1 / 4 \times 1 / 3=1 / \sqrt{ } 4 \times 3=1 / 3.46
$$

That the Geometric Mean is the unique way to combine group judgments is a theorem in mathematics.

ASSIGNING NUMBERS vs. PAIRED COMPARISONS

- A number assigned directly to an object is at best an ordinal and cannot be justified.
- When we compare two objects or ideas we use the smaller as a unit and estimate the larger as a multiple of that unit.
- If the objects are homogeneous and if we have knowledge and experience, paired comparisons actually derive measurements that are likely to be close and that indicate magnitude on a ratio scale.

PROBLEMS OF UTILITY THEORY

1. Utility theory is normative; it prescribes technically how "rational behavior" should be rather than looking at how people behave in making decisions.
2. Utility theory regards a criterion as important if it has alternatives well spread on it. Later it adopted AHP prioritization of criteria.
3. Alternatives are measured on an interval scale. Interval scale numbers can't be added or multiplied and are useless in resource allocation and dependence and feedback decisions.
4. Utility theory can only deal with a two-level structures if it is to use interval scales throughout.
5. Alternatives are rated one at a time on standards, and are never compared directly with each other.
6. It's implementation relies on the concept of lotteries (changed to value functions) which are difficult to apply to real life situations.
7. Until the AHP showed how to do it, utility theory could not cope precisely with intangible criteria.

WHY IS AHP EASY TO USE?

- It does not take for granted the measurements on scales, but asks that scale values be interpreted according to the objectives of the problem.
- It relies on elaborate hierarchic structures to represent decision problems and is able to handle problems of risk, conflict, and prediction.
- It can be used to make direct resource allocation, benefit/cost analysis, resolve conflicts, design and optimize systems.
- It is an approach that describes how good decisions are made rather than prescribes how they should be made.

WHY THE AHP IS POWERFUL IN CORPORATE PLANNING

1. Breaks down criteria into manageable components.
2. Leads a group into making a specific decision for consensus or tradeoff.
3. Provides opportunity to examine disagreements and stimulate discussion and opinion.
4. Offers opportunity to change criteria, modify judgments.
5. Forces one to face the entire problem at once.
6. Offers an actual measurement system. It enables one to estimate relative magnitudes and derive ratio scale priorities accurately.
7. It organizes, prioritizes and synthesizes complexity within a rational framework.
8. Interprets experience in a relevant way without reliance on a black box technique like a utility function.
9. Makes it possible to deal with conflicts in perception and in judgment.

$$
\begin{gathered}
\left.A_{l}\left[\begin{array}{rrr}
A_{l} & \cdots & A_{n} \\
\frac{w_{l}}{w_{l}} & \cdots & \frac{w_{l}}{w_{n}} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\frac{w_{n}}{w_{l}} & \cdots & \frac{w_{n}}{w_{n}}
\end{array}\right] \begin{array}{r}
w_{l} \\
\vdots \\
w_{n}
\end{array}\right]=n\left[\begin{array}{r}
w_{l} \\
\vdots \\
w_{n}
\end{array}\right] \\
A w=n w
\end{gathered}
$$

A is consistent if its entries satisfy the condition

$$
a_{j k}=a_{i k} / a_{i j} .
$$

Theorem: A positive n by n matrix has the ratio form $A=\left(w_{i} / w_{\mathrm{j}}\right), i, j=1, \ldots, n$, if, and only if, it is consistent.

Theorem: The matrix of ratios $A=\left(w_{i} / w_{\mathrm{j}}\right)$ is consistent if and only if n is its principal eigenvalue and $A w=n w$. Further, $w>0$ is unique to within a multiplicative constant.

When A is inconsistent we write $a_{i j}=\left(w_{i} / w_{\mathrm{j}}\right) \varepsilon_{\mathrm{ij}}, E=\left(\varepsilon_{\mathrm{ij}}\right), e^{T}$ $=(1, \ldots, 1)$

Theorem: w is the principal eigenvector of a positive matrix A if and only if $E e=\lambda_{\max } e$.

When the matrix A is inconsistent we have:

Theorem: $\lambda_{\text {max }} \geq \mathrm{n}$
Proof: Using $\mathrm{a}_{\mathrm{ji}}=1 / \mathrm{a}_{\mathrm{ij}}$, and $\mathrm{Aw}=\lambda_{\text {max }} \mathrm{w}$, we have
$\lambda_{\text {max }}-\mathrm{n}=(1 / \mathrm{n}) \sum\left[\delta^{2}{ }_{i j} /\left(1+\delta_{i j}\right)\right] \geq 0$ $1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n}$
where $a_{i j}=\left(1+\delta_{i j}\right)\left(w_{i} / w_{j}\right), \quad \delta_{i j}>-1$

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} w_{j} & =\lambda_{\max } w_{i} \\
a_{j i} & =1 / a_{i j} \\
\sum_{i=1}^{n} w_{i} & =1
\end{aligned}
$$

$$
\int_{a}^{b} K(s, t) w(t) d t=\lambda_{\max } w(s)
$$

$$
\lambda \int_{0}^{b} K(s, t) w(t) d t=w(s)
$$

$$
\int_{a}^{b} w(s) d s=1
$$

$$
\begin{gathered}
K(s, t) K(t, s)=1 \\
K(s, t) K(t, u)=K(s, u), \\
\text { for all } s, t, \text { and } u
\end{gathered}
$$

A consistent kernel satisfies

$$
K(s, t)=k(s) / k(t)
$$

From which the response eigenfunction $w(s)$ is given by

$$
w(s)=\frac{k(s)}{\int_{S} k(s) d s}
$$

Thus $w(s)=\&<k(s)$

Generalizing on the discrete approach we assume that $K(s, t)$ is homogeneous of order 1. Thus, we have:
$K(a s, a t)=a K(s, t)=k(a s) / k(a t)$ $=a k(s) / k(t)$

It turns out that the response eigenfunction $w(s)$ satisfies the following functional equation

$$
w(a s)=b w(s)
$$

where $b=\alpha a$.
The solution to this functional equation is also the solution of Fredholm's equation and is given by the general damped periodic response eigenfunction $w(s)$:

$$
w(s)=C e^{\log b \frac{\log s}{\log a} P\left(\frac{\log s}{\log a}\right), ~}
$$

where P is periodic of period 1 and $P(0)=1$.

The well-known Weber Fechner logarithmic law of response to stimuli can be obtained as a first order approximation to our eigenfunction:

$$
v(u)=C_{1} e^{-\beta u} P(u) \approx C_{2} \log s+C_{3}
$$

where $P(u)$ is periodic of period 1 , $u=\log s / \log a$ and $\log a b \approx-\beta, \beta>0$.

The integer valued scale can be derived from the Weber-Fechner Law as follows

$$
\begin{gathered}
M=a \log s+b, \quad a \neq 0 \\
s_{1}=s_{0}+\Delta s_{0}=s_{0}+\frac{\Delta_{s_{0}}}{s_{0}} s_{0}=s_{0}(1+r) \\
s_{2}=s_{1}+\Delta_{s_{1}}=s_{1}(1+r)=s_{0}(1+r)^{2} \equiv s_{0} \alpha^{2} \\
s_{n}=s_{n-1} \alpha=s_{0} \alpha^{n}(n=0,1,2, \ldots) \\
n=\frac{\left(\log s_{n}-\log s_{0}\right)}{\log \alpha}
\end{gathered}
$$

We take the ratios $M_{i} / M_{1}, i=1, \ldots, n$ of the responses:
$\mathrm{M}_{1}=a \log \alpha, \mathrm{M}_{2}=2 a \log \alpha, \ldots$,
$\mathrm{M}_{\mathrm{n}}=\mathrm{n} a \log \alpha$.
thus obtaining the integer values of the
Fundamental scale of the AHP: 1, 2, ...,n.

The next step is to provide a framework to represent synthesis of derived scales in the case of feedback.

The Analytic Network Process (ANP) for Decision Making and Forecasting with Dependence and Feedback

- With feedback the alternatives depend on the criteria as in a hierarchy but may also depend on each other.
- The criteria themselves can depend on the alternatives and on each other as well.
- Feedback improves the priorities derived from judgments and makes prediction much more accurate.

Feedback Network with components having Inner and Outer Dependence among Their Elements

Loop in a component indicates inner dependence of the elements in that component with respect to a common property.

Example of Control Hierarchy

Optimum Function of A System in Decision Making

Influence is too general a concept and must be specified in terms of particular criteria. It is analyzed according to each criterion and then synthesized by weighting with these priorities of the "control" criteria belonging to a hierarchy or to a system.

where

Predicted Turnaround Date of U.S. Economy from April 2001

2001 Prediction made	April 7, 2001			
	Months	Midpoint	Priorities	Midpt x Priorities
Zero	0	0		
Three Months	3	1.5	0.20344	0.30516
Six Months	6	4.5	0.17022	0.76599
Twelve Months	12	9	0.21798	1.96182
Twenty Four Months	24	18	0.40846	7.35228
			SUM	$\mathbf{1 0 . 3 8 5 2 5}$

Turnaround of present slump in U.S. economy is predicted in about 10 months from April 2001 which would be around Feb. 2002

Supermatrix of a Hierarchy

$$
\mathrm{W}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \bullet \bullet & 0 & 0 & 0 \\
\mathrm{~W}_{21} 0 & 0 & \bullet \bullet & 0 & 0 & 0 \\
0 & \mathrm{~W}_{32} & 0 & \bullet \bullet \bullet & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots \because: & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \bullet \bullet \bullet & \mathrm{~W}_{\mathrm{n}-1, \mathrm{n}-2} & 0 & 0 \\
0 & 0 & 0 & \bullet \bullet & 0 & \mathrm{~W}_{\mathrm{n}, \mathrm{n}-1} & \mathrm{I}
\end{array}\right]
$$

for korn

Hierarchic Synthesis

The Management of a Water Reservoir

Here we are faced with the decision to choose one of the possibilities of maintaining the water level in a dam at: Low (L), Medium (M) or High (H) depending on the relative importance of Flood Control (F), Recreation (R) and the generation of Hydroelectric Power (E) respectively for the three levels. The first set of three matrices gives the prioritization of the alternatives with respect to the criteria and the second set, those of the criteria in terms of the alternatives.

A Feedback System with Two Components

	$\begin{array}{cc} \hline & \text { Low Leve } \\ \mathrm{R} \end{array}$	$\overline{\mathrm{am}}$	Eigenvector	1) At Low Level, which attribute is satisfied best?
Flood Control Recreation Hydro-Electric Power	c 3 $1 / 3$ 1 $1 / 5$ $1 / 3$ Consistency Ratio	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ &= .033 \end{aligned}$	$\begin{aligned} & .637 \\ & .258 \\ & .105 \end{aligned}$	
2) At Intermediate Level, which attribute is satisfied best?	Intermediate Level Dam F R			Eigenvector
	Flood Control Recreation Hydro-Electric \quad Power	$\begin{array}{r} 1 \\ 3 \\ 1 \\ \text { Cons } \\ \hline \end{array}$	R 1 1 3 $1 / 3$ 1 ncy Ratio $=$.000	.200 .600 .200
	$\begin{gathered} \text { High Level } \\ \mathrm{F} \\ \mathrm{R} \\ \hline \end{gathered}$	E	Eigenvector	3) At High Level, which attribute is satisfied best?
Flood Control Recreation Hydro-Electric Power	1 $1 / 5$ 5 1 9 4 Consistency Ration	$\begin{gathered} \hline 1 / 9 \\ 1 / 4 \\ 1 \\ =.061 \end{gathered}$	$\begin{aligned} & .060 \\ & .231 \\ & .709 \end{aligned}$	
				111

Hamburger Model

Estimating Market Share of Wendy's, Burger King and McDonald's with respect to the single economic control criterion

Weighted Supermatrix

Weighted:	Menu	$\begin{aligned} & \hline \text { Cleanli } \\ & \text { ness } \end{aligned}$	Speed	Service	Location	Price	Reputa tion	$\begin{aligned} & \text { Take } \\ & \text { Tut } \end{aligned}$	Portion	Taste	$\begin{aligned} & \text { Nutri } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { req } \\ \text { uency } \end{array} \end{aligned}$	Promo \|tion	Creativ ity	Wendy's	$\begin{aligned} & \text { Burger } \\ & \text { King } \end{aligned}$	$\begin{aligned} & \text { McDon- } \\ & \text { ald's } \end{aligned}$
Menu ltem	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0382	0.0000	0.0000	0.0000	0.0000	0.0407	0.0219	0.0177	0.0293	0.0095	0.0297
Cleanliness	0.1262	0.0000	0.0000	0.3141	0.0000	0.0000	0.0473	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0516	0.0205	0.0622
Speed	0.0384	0.4544	0.0000	0.1725	0.0000	0.0000	0.0164	0.1755	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0120	0.0261	0.0090
Service	0.0000	0.0473	0.1138	0.0000	0.0000	0.0000	0.0089	0.0333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0121	0.0267	0.0045
Location	0.0105	0.1036	0.0000	0.0593	0.0000	0.0990	0.0523	0.3964	0.0000	0.0000	0.0000	0.0257	0.0000	0.0930	0.0265	0.0418	0.0200
Price	0.0232	0.0000	0.0000	0.0000	0.0000	0.0000	0.0123	0.0000	0.4287	0.0000	0.0000	0.0000	0.1091	0.0000	0.0056	0.0446	0.0062
Reputation	0.0000	0.0000	0.0490	0.0593	0.0000	0.0000	0.0113	0.0000	0.0000	0.0000	0.0000	0.0646	0.0000	0.0203	0.0387	0.0078	0.0417
Take-Out	0.0000	0.0000	0.4426	0.0000	0.0000	0.0990	0.0113	0.0000	0.0715	0.0000	0.0000	0.0000	0.0000	0.0000	0.0110	0.0095	0.0138
Portion	0.0151	0.0000	0.0000	0.0000	0.0000	0.0550	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0062	0.0428	0.0348
Taste	0.0460	0.0000	0.0000	0.0000	0.0000	0.0000	0.0414	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0185	0.0047	0.0092
Nutrition	0.0050	0.0000	0.0000	0.0000	0.0000	0.0110	0.0062	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0413	0.0184	0.0219
Frequency	0.4554	0.0000	0.0000	0.0000	0.0000	0.1014	0.3338	0.0000	0.0000	0.0000	0.0000	0.0000	0.4149	0.5444	0.3455	0.3773	0.3519
Promotion	0.1038	0.0000	0.0000	0.0000	0.0000	0.5056	0.2233	0.0000	0.0000	0.0000	0.0000	0.3110	0.0000	0.0778	0.0383	0.0601	0.0697
Creativity	0.0474	0.0000	0.0000	0.0000	0.0000	0.0000	0.0498	0.0000	0.0000	0.0000	0.0000	0.3110	0.2071	0.0000	0.1485	0.0953	0.1107
Wendy's	0.0401	0.1974	0.0391	0.2082	0.0950	0.0123	0.0130	0.0773	0.1381	0.6044	0.5940	0.0217	0.0217	0.0289	0.0000	0.0359	0.0429
Burger King	0.0253	0.0987	0.1436	0.0552	0.2500	0.0323	0.0291	0.1226	0.0640	0.1049	0.1570	0.0482	0.0482	0.0662	0.0537	0.0000	0.1718
McDonald 's	0.0636	0.0987	0.2118	0.1313	0.6550	0.0845	0.0869	0.1948	0.2976	0.2907	0.2490	0.1771	0.1771	0.1517	0.1611	0.1788	0.0000

Limiting Supermatrix

\rightarrow Relative local weights: Wendy's=0.156, Burger King $=0.281$, and McDonald' $=0.566$

Hamburger Model					
Synthesized Local:			Synthesized Local Cont'd:		
Other	Menu Item	0.132	Advertising	Frequency	0.485
	Cleanliness	0.115		Promotion	0.246
	Speed	0.104		Wendy's	0.267
	Service	0.040	Competition		0.156
	Location	0.224		Burger King	0.281
	Price	0.138		McDonald's	0.566
	Reputation	0.167			
	Take-Out	0.086		:	
Quality	Portion	0.494			
	Taste	0.214			
	Nutrition	0.316		\cdots	
	Simple Hierarchy (Three Level)	Complex (Several	x Hierarchy Levels)	Feedback Network	Actual Market Share
Wendy's	0.3055	0.1884		0.156	0.1320
Burger King	0.2305	0.2689		0.281	0.2857
McDonald's	0.4640	0.5427		0.566	0.5823
				115	

The Brain Hypermatrix
 Order, Proportionality and Ratio Scales

All order, whether in the physical world or in human thinking, involves proportionality among the parts, to establish harmony and synchrony among them in order to produce the whole.

* Proportionality means that there is a ratio relation among the parts. Thus, to study order or to create order, we must use ratio scales to capture and synthesize the relations inherent in that order. The question is how?
* We note that our perceptions of reality are miniaturized in our brains. We control the outside environment, which is much larger than the images we have of it, in a very precise way. This needs proportionality between what our brains perceive and how we interact with the outside world.

The Brain Hypermatrix and its Complex Valued Entries

The firings of a neuron are electrical signals. They have both a magnitude and a direction (a modulus and an argument) and are representable in the complex domain. We cannot do them justice by representing them with a real variable. Thus the mathematics of the brain must involve complex variables. The synthesis of signals requires proportionality among them. Such proportionality can be represented by a functional equation with a complex argument. Its solution represents the firings of a neuron and is what we want.

The Brain Hypermatrix and its Complex Valued Eigenfunction Entries

Generalizing on the real variable case involving Fredholm's equation of the second kind we begin with the basic proportionality functional equation:

$$
w(a z)=b w(z)
$$

whose general solution with a, b and z complex is given by:

$$
w(z)=C b^{(\log z / \log a)} P(\log z / \log a)
$$

where P is an arbitrary multi-valued periodic function of period 1.
whose Fourier transform is given by:

$$
\begin{aligned}
& =(1 / 2 \pi) \log a \sum_{-\infty}^{\infty} a_{n}^{\prime}\left[\frac{(2 \pi n+\theta(b)-x)}{(\log a|b|+(2 \pi n+\theta(b)-x)} i\right] \\
& \delta(2 \pi n+\theta(b)-x)
\end{aligned}
$$

where $\delta(2 \pi n+\theta(b)-x)$ is the Dirac delta function. In the real situation, the Fourier series is finite as the number of synapses and spines on a dendrite are finite.

There are three cases to consider in the solution of the functional equation $w(a z)=b w(z)$.

1) That of real solutions;
2) That of complex solutions;
3) That of complex analytic solutions.

Here is a sketch of how the complex solution is derived. We choose the values of w arbitrarily in the ring between circles around 0 of radii 1 (incl.) and $|a|$ (excl.). We designate it by $W(z)$. Thus $w(z)=W(z)$ for $1 \leq|z|$ $<|a|$. By the equation itself, $w(z)=w(z / a) b=W(z / a) b$ for
$|a| \leq|z|<|a|^{2}, w(z)=w(z / a) b=w\left(z / a^{2}\right) b^{2}=W\left(z / a^{2}\right) b^{2}$
for $|a|^{2} \leq|z|<|a|^{3}$, and so on (also $w(z)=w(a z) / b=W(a z) b^{-1}$ for $1 /|a| \leq$ $|z|<1$ etc.). Thus the general complex solution of $w(a z)=b w(z)$ is given by $w(z)=W\left(z / a^{n}\right) b^{n}$ for $|a|^{n} \leq|z|<|a|^{n+1}$ where $W(z)$ is arbitrary for $1 \leq$ $|z|<|a|$. From, $|a|^{n} \leq|z|$ we have, $n=[\log |z| / \log |a|]$ where
$[x]$ is the integer closest to x from below. Here logarithms of real values are taken, so there are no multiple values to be concerned about. But then the solution becomes

$$
w(z)=W\left(z / a^{[\log |z| / \log |a|]}\right) b^{[\log |z| / \log |a|]},
$$

with W arbitrary on the ring $l \leq|z|<|a|$

Weierstrass' trigonometric approximation theorem:
Any complex-valued continuous function $f(x)$ with period 2π can be approximated uniformly by a sequence of trigonometric polynomials of the form $\sum_{n} c_{n} e^{i n x}$.
A function is called a periodic testing function if it is periodic and infinitely smooth. The space of all periodic testing functions with a fixed common period T is a linear space. A distribution f is said to be periodic if there exists a positive number T such that $f(t)=f(t-\mathrm{T})$ for all T . This means that for every testing function $\phi(f(t), \phi(t))=(f(t-T), \phi(t))$.

Sobolev considered a Banach space of functions that are both Lebesgues integrable of class $p \geq 1$ and differentiable up to a certain order l and under certain conditions on p and l, also continuous.

Werner (1970) has shown that
(1) Every $f(x) \varepsilon C[a, b]$ has a best [T-norm] approximation in E_{n}.
(2) If the best approximation to $\mathrm{f}(\mathrm{x}) \varepsilon \mathrm{C}[\mathrm{a}, \mathrm{b}]$ in E_{n} also belongs to $\mathrm{E}_{\mathrm{n}}{ }^{0}$, then it is the unique best approximation.
A set of functions of the form $\sum_{k=1}^{n} c_{k} f_{k}(x)$, where $c_{k}, k=1, \ldots, n$, $\mathrm{k}=1$
are arbitrary reals and $n=1,2, \ldots$, is dense in $C[a, b]$, if the set of functions $\{\mathrm{f}(\mathrm{x})\}$ is closed in $\mathrm{C}[\mathrm{a}, \mathrm{b}]$, i.e., all its limit points belong to $\mathrm{C}[\mathrm{a}, \mathrm{b}]$.
Muntz proved that the set $\left.\left\{\mathrm{s}_{\mathrm{k}}\right\}, \alpha_{\mathrm{k}} \geq 0, \mathrm{k}=1,2, \ldots\right\}$ is closed in $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ if and only if $\sum\left(1 / \alpha_{\mathrm{k}}\right)$ diverges. Let $\mathrm{t}=-\operatorname{logs}$, it follows that the set $\left.\mathrm{e}^{-\beta}{ }_{\mathrm{k}}{ }^{\mathrm{t}}, \beta_{\mathrm{k}} \geq 0, \mathrm{k}=1,2, \ldots\right\}$ is closed in $\mathrm{C}[0, \infty]$ if and only if $\sum\left(1 / \beta_{\mathrm{k}}\right)$ diverges. It can be shown that the set of products $\left\{\mathrm{s}^{\alpha} \mathrm{k}^{-\beta} \mathrm{k}_{\mathrm{k}}{ }^{\mathrm{t}}\right\}$ is also closed in $\mathrm{C}[0, \infty]$ with the same two conditions. Thus finite linear combinations of these functions are dense in $\mathrm{C}[0, \infty]$.

The justification for the use of the gamma-like response functions $\left\{\mathrm{s}^{\alpha}{ }_{\mathrm{k}} \mathrm{e}^{-\beta}{ }_{\mathrm{k}}{ }^{\mathrm{t}}\right\}$ is partly theoretical and partly empirical. With the basic assumption that the decay of depolarization between impinging subthreshold impulses is negligible, the distribution of neuronal firing intervals in spontaneous activity has been approximated by the gamma distribution.
If the decay is not negligible as we assume in our work, then one can decompose the approximation into sums of exponentials as follows:
n

$$
\mathrm{E}_{\mathrm{n}}^{0}=\left\{\mathrm{f}(\mathrm{x}) \mid \mathrm{f}(\mathrm{x})=\sum_{\mathrm{j}=1} \mathrm{c}_{\mathrm{j}} \mathrm{e}_{\mathrm{j}}^{\lambda_{\mathrm{i}}}, \mathrm{c}_{\mathrm{j}}, \lambda_{\mathrm{j}} \varepsilon \mathrm{R}\right\}
$$

However $\mathrm{E}_{\mathrm{n}}{ }^{0}$ is not closed under the Tchebycheff or T-norm

$$
\|f(x)\|=\max _{x}|f(x)|
$$

and hence a best approximation need not exist.

Several Ratio Scales and Related Functional Equations

One can multiply and divide but not add or subtract numbers from different ratio scales. We must synthesize different ratio scales that have the form of the eigenfunction solution
$\left.u_{k}\left(z_{k}\right)=\left(b_{k}\right)^{\left[\log \left|z_{k}\right| \log \left|z_{k}\right|\right]} P_{k}\left[-\lg \left|z_{k}\right| / \log \left|a_{k}\right|\right]\right\rangle, \quad k=1, \ldots, n$
where k refers to different neural response dimensions, such as sound, "feeling" which is a mixture of sensations (a composite feeling), and so on. Their product is a function of several complex variables and is the solution of the following equation.

$$
\prod_{k} w_{k}\left(a_{k} z_{k}\right)=\prod_{k} b_{k} u_{k}\left(z_{k}\right)
$$

The product of solutions of $w_{k}\left(a_{k} z_{k}\right)=b_{k} w_{k}\left(z_{k}\right)$ satisfies such an equation with the new $b=b_{k}$. Since the product of periodic functions of period 1 is also a periodic function of period one, the result of taking the product has the same form as the original function: a damping factor multiplied by a periodic function of period 1 . If we multiply n solutions in the same variable z, in each of which b and W are allowed to be different, perhaps by adopting different forms for the periodic component, we obtain:

$$
\begin{aligned}
& \left(b_{1} b_{2} \cdots b_{n}\right)^{[\log |z| / \log |a|]} W_{1}\left(z / a^{[\log |z| / \log |a|]}\right) W_{2}\left(z / a^{[\log |=|/ \log | a|]}\right) \ldots \\
& W_{n}\left(z / a^{[\log z \log |a|]}\right)=b^{[\log |z| \log |a|]} V\left(z / a^{[\log |z||\log | a \mid]}\right)
\end{aligned}
$$

One then takes the Fourier transform of this solution.

Graphing Complex Functions

Complex functions cannot be drawn as one does ordinary functions of three real variables because of their imaginary part. Nevertheless, one can make a plot of the modulus or absolute value of such a function. The density of linear combinations of Dirac-type functions or of approximations to them makes it possible to plot in the plane a version of our complex-valued solution.

The Brain Hypermatrix

We need to raise this matrix to a sufficiently large power to connect all the parts that interact. The brain itself does this through feedback firings.

- Since our solution is a product of two factors, the inverse transform can be obtained as the convolution of two functions, the inverse Fourier transform of each of which corresponds to just one of the factors.
- Now the inverse Fourier transform of $e^{-\beta u}$ is given by

$$
\frac{\sqrt{(2 / \pi) \beta}}{\beta^{2}+\xi^{2}}
$$

Also because of the above discussion on Fourier series, we have

$$
P(u)=\sum_{k=-\infty}^{\infty} \alpha_{k} e^{2 \pi i k u}
$$

- whose inverse Fourier transform is:

$$
\sum_{k=-\infty}^{\infty} \alpha_{k} \delta(\xi-2 \pi k)
$$

- Now the product of the transforms of the two functions is equal to the Fourier transform of the convolution of the two functions themselves which we just obtained by taking their individual inverse transforms.
- We have, to within a multiplicative constant:

$$
\int_{-\infty}^{+\infty} \sum_{k=-\infty}^{\infty} \alpha_{k} \delta(\xi-2 \pi k) \frac{\beta}{\beta^{2}+(\chi-\xi)^{2}} d \xi=\sum_{k=-\infty}^{\infty} \alpha_{k} \frac{\beta}{\beta^{2}+(x-2 \pi k)^{2}}
$$

- We have already mentioned that this solution is general and is applicable to phenomena requiring relative measurement through ratio scales. Consider the case where

$$
P(u)=\cos u / 2 \pi=(1 / 2)\left(e^{i u / 2 \pi}+e^{-i u / 2 \pi}\right)
$$

- Bruce W. Knight adopts the same kind of expression for finding the frequency response to a small fluctuation and more generally using $e^{i u / 2 \pi}$ instead. The inverse Fourier transform of $w(u)=C e^{-\beta u} \cos u / 2 \pi, \beta>0$ is given by:

$$
c \frac{\beta}{\sqrt{2 \pi}}\left[\frac{1}{\beta^{2}+\left(\frac{1}{2 \pi}+\xi\right)^{2}}+\frac{1}{\beta^{2}+\left(\frac{1}{2 \pi}-\xi\right)^{2}}\right]
$$

- When the constants in the denominator are small relative to ξ we have c_{1} / ξ^{2} which we believe is why optics, gravitation (Newton) and electric (Coulomb) forces act according to inverse square laws. This is the same law of nature in which an object responding to a force field must decide to follow that law by comparing infinitesimal successive states through which it passes. If the stimulus is constant, the exponential factor in the general response solution given in the last chapter is constant, and the solution in this particular case would be periodic of period one. When the distance ξ is very small, the result varies inversely with the parameter $\beta>0$.
- The brain generally miniaturizes its perceptions into what may be regarded as a model of what happens outside. To control the environment there needs to be proportionality between the measurements represented in the miniaturized models that arise from the firings of our neurons, and the actual measurements in the real world. Thus our response to stimuli must satisfy the fundamental functional equation $F(a x)=$ $b F(x)$. In other words, our interpretation of a stimulus as registered by the firing of our neurons is proportional to what it would be if it were not filtered through the brain.
$w(z)=z^{\ln b / \ln a} P(\ln z / \ln a)$ whose spacetime Fourier transform is a combination of Dirac distributions.
Our solution of Fredholm's equation here is given as the Fourier transform,
$f(\omega)=\int_{-\infty}^{+\infty} F(x) e^{-2 \pi i \omega x} d x=C e^{\beta \omega} P(\omega)$

The response function $w(s)$ of the neuron in spontaneous activity results from solving the homogeneous Fredholm equation and is given by

$$
w(t)=t^{\alpha} e^{g(t)} / \int_{0}^{b} t^{\alpha} e^{g(t)} d t
$$

for some choice of $g(t)$. Because finite linear combinations of the functions $\left\{t^{\alpha} e^{-\beta t}, \alpha, \beta \geq 0\right\}$ are dense in the space of bounded continuous functions $\mathbf{C}[0, b]$ we can approximate $t^{\alpha} e^{g(t)}$ by linear combinations of $t^{\alpha} e^{-\beta t}$ and hence we substitute $g(t)=-\beta t, \beta \geq 0$ in the eigenfunction $w(t)$.

